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Workshop objectives
1. Measuring distance betwen two point clouds

• Approaches to register point clouds & quality control (day 2)
→ need for metrics to evaluate the distance between two point clouds (M3C2)

• Type of distance measurements
• Feature matching (some examples but no practical)
• Featureless distances: Cloud 2 Cloud, Difference of DEM, M3C2

• Source of uncertainties
• Instrument, registration, method used….
• How to include them in distance measurements ?

• Using a 3D distance field for scientific application
• Example of automated clustering & volume calculation for landslides (day 2)

2. Improving your technicity in processing point clouds
• With Cloudcompare (Rennes team)
• With Python (Potsdam team)

3. Try to solve some of the problems you face with your data
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Kaikoura Earthquake Dataset used in
Bernard, Lague and Steer, Esurf 2021 : Beyond 2D landslide inventories and their rollover: synoptic 
3D inventories and volume from repeat lidar data

Note: the 2014 and 2016 surveys have been cut to not have the same spatial extent. This is to 

better highlight the sensitivity of  various methods of  change detection or registration.
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Terrestrial LiDAR data from the Rangitikey river in NZ, used in 
Lague, Brodu and Leroux, ISPRS 2013 : M3C2 paper

Lague, Dev in Earth Surf Processes, 2021 book chapter on Terrestrial Laser scanner applied to fluvial geomorphology

Surveys in 2009 and 2011
Variety of processes:
• Rockfalls
• Bed aggradation/erosion
• Bank erosion

Leica Scanstation 2 (slow but accurate !)
~ 1 -2 cm point spacing
Registration error ~ 3-5 mm (1 std)
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Classification with Canupo, but voluntarily not perfect
Version subsampled at 2 cm for 



1. Type of distance measurements
1. Feature based change detection
2. Featureless distance measurement

1. Cloud to cloud
2. Difference of DEM
3. M3C2 distance

2. Sources of uncertainty
1. Components of uncertainty in 3D point cloud change detection

1. Positional uncertainty
2. Registration uncertainty
3. Roughness uncertainty

2. Background on uncertainties
3. Examples

5



Tectonic
Fault

Earthquake displacement

Rockfalls

Erosion

Deposition

No features to match

→ distance & volume

Slow landslide displacement

Feature matching

→ 2D-3D displacement field

Bank Erosion Sedimentation

River change

Ground movements displacing

topographic features

Geomorphic processes changing

topographic features
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• Derived from techniques of 2D image correlation but using a raster DEM

• Aryal et al., JGR, 2012: Using cross-correlation techniques developped for 
Particle Image Velocimetry
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Lucieer et al., Progress in Phys. Geography, 2014

2D Displacement field from DEM correlation
using COSI-CORR (Leprince et al., 2007). 

1 cm DEM.
19 july 2011 to 10 Nov 2011
Vertical registration error ~ 1.7 cm

Vertical difference of DEM

Loss of correlation Negligible vertical 
change / significant
horizontal change
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Piecewise ICP (Iterative Closest Point): 

• PC is divided in smaller clouds

• a registration is performed between the two epochs

• Gives a local 3D displacement vector

Teza et al., 2007,2008 TLS : landslide displacement

Airborne Lidar : tectonic displacement

(From Krishnan et al., 2016)

Vertical displacement across a fault (Ed Nissen)
From Ed Nissen’s course on OpenTopography

Benefits:

• Works directly on 3D point clouds

• 3D displacement field

• Potentially very accurate

Current Limits:

• Requires a surface with topographic complexity or features (e.g., buildings)

• Features must be preserved after the event

• Range of  displacement cannot be too large 9



From Passalacqua et al., 2015

Tectonic
Fault

Earthquake displacement

Slow landslide displacement

Rockfalls

Erosion

Deposition

Bank Erosion Sedimentation

River change

Deep feature 3D 

matching

e.g., F2S3
(Z. Gojcic et al., 2020)

M3C2
C2C

Diff of
DEM (DOD)
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1. Type of distance measurements
1. Feature based change detection
2. Featureless distance measurement

1. Difference of DEM
2. Cloud to cloud
3. M3C2 distance

2. Sources of uncertainty
1. Components of uncertainty in 3D point cloud change detection

1. Positional uncertainty
2. Registration uncertainty
3. Roughness uncertainty

2. Background on uncertainties
3. Examples
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Time t

Time t+dt

For each pixel, 
dz=z(t+dt)-z(t)

Raster of elevation difference

• The classical approach in Geomorphology and Earth Sciences
• Very easy to perform on any GIS
• Can also be done in Cloudcompare, but not necessarily optimal
• Very advanced packages existing for fluvial analysis (Geomorphological Change 

Detection Toolbox, Wheaton et al. 2010)
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• Kaikoura EQ Lidar dataset (2014 and 2016, ground data only)
• Load the 2 datasets

• Tools -> volume -> compute 2.5D volume with a step of 1 m
• Note the added and removed volume

• Note the % of matching cells

• Export grid of height difference raster

• NOTE: the height difference is automatically calculated on the same grid

Practical
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• SDDS tests : Same Data Differing Sampling tests (Lague et al., 2013; Bernard et al., 2021; )

• Same underlying surface but different sampling

• Take into account the noise in the data and the surface roughness without the registration error

→ no change should theoretically be measured by the change detection technique

Practical

Original Data (gravel river bed) Subsampling with
min distance

1400 pts

Random Subsampling
with 1400 pts

Applications:
• Testing robustness of change detection method
• Testing robustness of cloud matching approaches (ICP,…)
• Indirect validation of statistical models for significant change detection 14



Kaikoura 2016 EQ Lidar dataset
• Subsample with 0.5 m min distance -> 2016_sub0.5

• Subsample randomly to have ~ 9.5 million points -> 2016_rand

• Tools -> volume -> compute 2.5D volume with a step of 1 m 

• What do you observe ?

• Compute the std deviation of the height difference (tools -> statistics -> 
compute stat params -> gauss)

Practical

15



• Pros
• Regular sampling of topographic change
• Compact format
• Easy vertical differencing (Difference of DEM=DoD)
• Simple volume calculation = sum of the vertical difference x pixel area
• Well integrated in traditional workflow using DEM

• Cons
• Loss of resolution as topographic slope increases

• Cannot represent vertical surfaces
• No oriented difference

• E.g., bank erosion and bed aggradation correctly
• Interpolation on complex surfaces

• “Creation” of data whose accuracy is unknown
• You generally lose the information on where interpolation occured

• Loss of sub-pixel information
• Did you have 100 pts in your pixel or 1 ?
• Was the sub-pixel geometry flat or rough ?

• Cannot represent 3D above ground features
• Did you have 100 pts in your pixel or 1 ?

Diff of DEM

Landsliding

Bank
erosion

Measure distance in 3D, directly on point clouds 16



1. Type of distance measurements
1. Feature based change detection
2. Featureless distance measurement

1. Difference of DEM
2. Cloud to cloud
3. M3C2 distance

2. Sources of uncertainty
1. Components of uncertainty in 3D point cloud change detection

1. Positional uncertainty
2. Registration uncertainty
3. Roughness uncertainty

2. Background on uncertainties
3. Examples
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For each point in the compared PC, look for the 
nearest neighbour in the reference PC and compute

the 3D distanceReference

Compared

Pro:
• A 3D measurement directly on point clouds : can be used on horizontal or vertical surfaces
• Super fast and simple (no need to rasterize)
• Highest resolution possible

Con: 
• Underestimation of true distance due to noise
• No normal calculation

→ Non-oriented measurement : not necessarily the orthogonal distance between two surfaces. E.g. 
on a river bed, not generally the vertical distance → overestimation of true distance
→ Non-signed measurement : no difference between erosion and sedimentation

• Highly sensitive to missing data

Ref

Compared

No data
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• Using the Kaikoura EQ dataset
• Select C2C distance between 2016 and 2014, with 2014 as 

a reference (1st epoch)

• Press COMPUTE

• A new scalar field is created in the 2016 dataset

Practical

Very large value due to 
difference in LiDAR extents
→ can lead to very long 
computation time
→ can be lowered if 
necessary

Some infos on very approximate measures. NOT TO BE USED

This value depends on 
your CPY. On a very large 
dataset, leave at least 1 
thread not used (7/8)
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• Using a local model
• Reduces the underestimation due to noise

• Does not resolve the non-oriented issue

• Does not yield a signed distance

• Using the vertical component of the distance vector
• Signed vertical distance = erosion and sedimentation

• Does not resolve the non-oriented issue

• Is not accurate enough

From Lague et al., 2013

Useful for quick & dirty exploration of data to evaluate where large vertical change occur
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Reference point cloud:

• Ideally the initial dataset

• But sometimes choosing a dataset with much larger point 
densities and less missing data yield better results

With cloudcompare:

• Check the maximum distance before launching the 
calculation

• Can be imposed if using command line
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• Using the Kaikoura EQ dataset
• Select C2C distance between 2016 and 2014, with 2016 as 

a reference (as it is the denser point cloud)

• Tick the « split X,Y,Z components »

• Set max_distance = 30 m

• Select a local modeling : least square plane, 5 m radius

• Press COMPUTE

• 4 new scalar field are created on the 2014 dataset

• Display the C2C absolute distance [<30] (Z) scalar field

Practical

Tip: because we have inverted the reference, erosion
appears as positive. To change that multiply by -1 in 
scalar arithmetics
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• Perform a C2C without local modelling with the spatial 
subsampling as reference (with Z component)

• Display the histogram of absolute distances
• Compute the mean of non-zero absolute distances

• Display the histogram of the vertical distance
• Compute the std deviation of non zero absolute_distances_Z

• Tricky question : why does the distribution appear discretized ?

23
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1. Type of distance measurements
1. Feature based change detection
2. Featureless distance measurement

1. Difference of DEM
2. Cloud to cloud
3. M3C2 distance

a) Algorithm and choice of parameters

b) Benefits of 3D differencing vs vertical differencing

c) Worflow for an equivalent Difference of DEM with M3C2

d) Working with complex TLS data

2. Dealing with uncertainties
1. Components of uncertainty in 3D point cloud change detection

1. Positional uncertainty
2. Registration uncertainty
3. Roughness uncertainty

2. Background on uncertainties
3. Examples
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Rangitikei river, New-Zealand

Changes in visibility

3D surface normal 
orientation

Cobble bed

Variable roughness in 

space and time

Flat cliff Rockfall

10 m 10 m 10 m

Elements of M3C2
1. A way to compute distances
2. A model of uncertainty to compute

a confidence interval for each
distance accounting
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1: Normal direction calculation on cloud 1 at scale D
→ Oriented difference

2: Cylinder of diameter d (projection scale)
• Average position of each PC within the cylinder
• M3C2 Distance = distance between the two average 

position along the normal direction 
Projection

scale d
= averaging scale

4: Distance smaller than confidence interval 
→ statistically not significant

5: Length of the cylinder = Lmax. If no intercept with other cloud
→ no calculation
→ no need to trim the data

CLOUD 1

CLOUD 2

3: Local confidence interval calculation using
→ Local cloud roughness
→ Local point density
→ Global registration

2009 2011

Normal
Scale= D

Tip : scales in M3C2 are diameters
Search depth Lmax 26



Option 1: Vertical mode
→ no normal calculation → Faster

Nickname : vertical-M3C2

Option 3: CORE POINTS
• Subset of points of arbitrary geometry on which the calculation is done

→ Grid of core points solve the sampling irregularity issue of 3D data
→ Spatial resampling of the data with minimum distance in 3D

• But uses the RAW DATA for underlying calculation
• Mean point position, point density, local roughness

→ Faster
→ Generate calculation 
→ Can be used for volume calculation

CLOUD 1

CLOUD 2

Horizontal mode
Automatically tracks bank orientation

Option 2: Horizontal normals
→ Bank or cliff retreat
→ No need to rotate the data

Core point cloud

27



• Create a raster from the 2014 dataset with 1 m step → core_2014_1m

• Select the 2014 and 2016 data and launch M3C2

• Fill the parameters as follow :

Practical M3C2

Tip : if the core_point already has 
normals, you can directly use 
them for faster processing

CLOUD 1

CLOUD 2

Normal
Scale = D

Projection
scale = d

Max depth Lmax

A specific core point 
cloud that you have 
created

On the fly minimum 
distance sub-sampling

Calculation on all the 
points of cloud # 1

Do not use for the moment

28



3D normal at a
constant scale
(default mode)

3D multi-scale
(will be explained later)

Faster calculation as 
there are less points 
than cloud #1

Because we are using
ALS we can directly
use +Z (i.e., the sky)

+Z

With ground-based 3D data (e.g., TLS) with overhanging parts using
+Z will be incorrect (flipping of sign of the M3C2_distance). We’ll see
how to deal with these limits using an « origin points file »

Practical M3C2
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Create the M3C2 Scalar Fields 
on the original core point file

Create a copy of the core point file (without all the scalars of the core point file) with the M3C2 Scalar Fields

Other options (advanced use): 
Project core points on « cloud #1 »

• Create a new point cloud corresponding to the average position of cloud #1 around each core point
• Records the M3C2 scalar fields on it
Tip : this will generate a smoothed version of cloud #1. I recommend to use it only if you really know what you’re doing !

Project core points on « cloud #2 »
• Create a new point cloud corresponding to the average position of cloud #2 around each core point
• Records the M3C2 scalar fields on it
Tip : this will generate a smoothed version of cloud #2. I recommend to use it only if you really know what you’re doing !

Lague et al., 2013

Core point

Core point projection 

on cloud # 1

Core point projection 

on cloud # 2

Typical configuration

Practical M3C2
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• The output of M3C2 now has normals
• 7 new scalar fields :

• M3C2 distance: signed 3D distance (grey = no intercept with cloud # 2)
• Distance uncertainty at 95% confidence: spatially variable (will be explained later)
• Significant change (boolean): 1= M3C2_distance≥distance_uncertainty; 0= M3C2_distance<distance_uncertainty

• Npoints_cloud1 (resp 2) = nb pts intercepted by the projection cylinder in cloud #1 (resp cloud #2)
• Std_cloud1 (resp 2) = detrended roughness at the projection scale of cloud #1 (resp cloud #2)
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• Split the M3C2 _distance field in values, and NaN (min-max without
changing anything)

• Inspect the NaN values

Why an M3C2 distance is
not computed
everywhere ?
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• On the non-overlapping data, there are no correspondence in cloud 
#2 → expected behaviour, no need to trim the data !

• Inside the overlapping area 3 possible causes:
• The maximum depth is not large enough

• Increase the maximum depth

• Data is locally missing in one of the cloud
• e.g., below a tree, or due to water (full NIR absorption)

• Normal behaviour

• M3C2_distance is frequently not calculated
• The projection scale is too small

Typical case of max depth not large enough

On this dataset 40 m would be needed33



• M3C2 « averages » the point cloud to :
• Obtain a more accurate estimate of the mean position of the implicit surface (e.g., 

averaging random noise)
• Evaluate local parameters of the uncertainty model: nb points, standard deviation

• The optimal projection scale is thus a balance between :
• d large enough to have enough points on both clouds to compute a robust uncertainty

model (typically ~ 20 pts) → function of point clouds densities
• d small enough to resolve sharp spatial variations in M3C2 distances (i.e., avoiding a too

large smoothing effect)

Choose d such that you have at least ~ 20 pts on the point 
cloud with the smallest point density

e.g., discussion in Lague et al. 2013 and Bernard et al., 2021
34



Practical M3C2 : choosing the projection scale

2014 Lidar Nbpoints 2016 Lidar Nbpoints

LIDAR 2014 sets the 
constraint on the 

projection scale. 5 m is a 
good choice, as roughly 80 

% of core points have at 
least 20 points, but some
area won’t have enough
points to have a robust

M3C2_distance and 
uncertainty
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• Large enough to intercept the two point clouds = f(max topographic change)

• Vertical-M3C2: can be very large, but the larger the longer the calculation

• Standard 3D M3C2: be careful of double intercepts : cylinder crossing the 
same cloud twice : incorrect distance measurement

• Use the smallest max depth possible to avoid
double intercepts

• Inspect your data ! 
• Use a SDDS test to evaluate the problem
• New version of M3C2 using a progressive 

cylinder search currently in beta testing !
• Tip: the multiscale normal tend to favor this

issue, while a constant large normal reduces it
(at the expense of accurate distance 
measurement)Normal direction

36



Practical on M3C2

• Kaikoura 2016 EQ Lidar dataset
• Create a raster of core points with 2 m spacing -> core_2 m

• Use subsample versions « 2016_sub0.5 » and « 2016_rand »

• 3D-M3C2 with core_2m normal scale = 10 m, proj scale = 5 m, depth = 40 m

• Rename the M3C2_distance in M3C2_distance_40m

• 3D-M3C2 with the previous M3C2_result as core points, with normal scale = 
10 m, proj scale = 5 m and depth = 2 m (on output, tick the box use original 
cloud)

• Using scalar arithmetics compare M3C2_distance_40m and M3C2_distance 
at 2m depth

• Highlight where there are differences
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• Computing normal on rough surfaces is an extremely complex problem !

• D should be small enough to track the changes of the topography

• D should be large enough to not « flicker » due to noise

• The smaller is D, the faster is the computation of normals

Choose the smallest Dn such that
Normal Scale DN > ~ 25 roughness(DN)

Small scale compared to rougness characteristics

TRUE
displacement

Large scale compared to rougness characteristics

TRUE
displacement

Attempt in Lague et al., 2013 to define an objective function by comparing the 
distance estimation error Enorm and normal scale/roughness

Lague et al., 2013
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• No simple a priori prediction as roughness is scale dependent
• Roughness needs to be calculated at all scales (no automated

way (yet) in M3C2)
• Bernard et al., esurf, 2021 : Using the pre-EQ with the lowest point 

density, a normal scale of 10 m allows for ~80% of the points to 
validate 𝜻 > 25

For a given type of data (ALS, TLS,…), the normal scale is
generally not depending a lot on point density but on the 

roughness properties of the landscape :
ALS : 10-20 m seems a good range but further exploration of this

parameter is needed

Bernard et al., esurf, 2021
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• Developped as an attempt to automatically find the optimal scale

• Compute the normal at various scales and choose the scale at which the surface appears flatter

(the first M in M3C2)

Pros:
It better captures variations in normal orientation near edges, but appears more important for TLS than ALS

Cons:
It is super long, especially as we increase the largest scale -> in practive I barely use it, or with a limited range of scale
It can create very large local variations which may not be desirable for data interpretation
It remains to be systematically tested in more environments than Lague et al., 2013, especially for ALS 40



Multiscale approach from 4 to 50 m with 2 m step. M3C2 creates a new scalar field called « normal scale »
Result smoothed at 2.5 m radius

High curvature areas (channel banks, ridges…) yield small normal scales -> 4-10 m
Flat areas yield very large ones, typically 20-50 m : for these surfaces, using a 10 m scale does not change the 
normal vector, but significantly speed up calculation 41



1. Type of distance measurements
1. Feature based change detection
2. Featureless distance measurement

1. Difference of DEM
2. Cloud to cloud
3. M3C2 distance

a) Algorithm and choice of parameters

b) Benefits of 3D differencing vs vertical differencing

c) Worflow for an equivalent Difference of DEM with M3C2

d) Working with complex TLS data

2. Dealing with uncertainties
1. Components of uncertainty in 3D point cloud change detection

1. Positional uncertainty
2. Registration uncertainty
3. Roughness uncertainty

2. Background on uncertainties
3. Examples
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The impact of 3D differencing vs vertical differencing

• SDDS test : Same Data Differing Sampling test (Lague et al., 2013)

• Kaikoura 2016 EQ Lidar dataset
• Create a raster of core points with 2 m spacing -> core_2 m
• Subsample with 0.5 m min distance -> 2016_sub0.5
• Subsample randomly to have ~ 9.5 million points -> 2016_rand
• Vertical-M3C2 with projection scale = 5 m, depth = 3m

• Compute std of M3C2_distances
• Optionnal: you can perform a 2.5 volume calculation on 2016_sub0.5 and 2016_rand

• 3D-M3C2 with normal scale = 10 m, proj scale = 5 m, depth = 3 m
• Compute std of M3C2_distances

• Compare the two maps with similar saturation

Practical on M3C2
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From Bernard et al., 2021

Increased ability to detect change on steep slopes

Practical on M3C2
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1. Type of distance measurements
1. Feature based change detection
2. Featureless distance measurement

1. Difference of DEM
2. Cloud to cloud
3. M3C2 distance

a) Algorithm and choice of parameters

b) Benefits of 3D differencing vs vertical differencing

c) Worflow for an equivalent Difference of DEM with M3C2

d) Working with complex TLS data

2. Dealing with uncertainties
1. Components of uncertainty in 3D point cloud change detection

1. Positional uncertainty
2. Registration uncertainty
3. Roughness uncertainty

2. Background on uncertainties
3. Examples
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(e.g. Wagner et al., GRL, 2017)

1. Create a regular grid of point clouds with step 𝑑𝑥

2. Vertical-M3C2 with a projection scale > 2𝑑𝑥 to ensure entire sampling
of the surface
→ Grid of vertical distances where it can be calculated : no computation where there
is no corresponding data (i.e. wetted channels)
→ Grid of spatially variable confidence intervals

3. Interpolate the grid of vertical distances if needed

4. Compute volume and volume uncertainty

46

Illustration on the Kaikoura ALS Data



(Wagner, Lague, Morhig, Passalacqua, Shaw, Moffett, GRL, 2017)

Uncertainty map combining roughness
and registration effects
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1. Type of distance measurements
1. Feature based change detection
2. Featureless distance measurement

1. Difference of DEM
2. Cloud to cloud
3. M3C2 distance

a) Algorithm and choice of parameters

b) Benefits of 3D differencing vs vertical differencing

c) Worflow for an equivalent Difference of DEM with M3C2

d) Working with complex TLS data

2. Dealing with uncertainties
1. Components of uncertainty in 3D point cloud change detection

1. Positional uncertainty
2. Registration uncertainty
3. Roughness uncertainty

2. Background on uncertainties
3. Examples
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• Load the TLS_Mangarere_Rangitikei.bin file

• C2C with 2011 data as the reference
• What do you observe ?

• Core points creation for M3C2 calculation
• Which dataset would be best to create the core points ?

• Create core points from spatial subsampling at 5 cm

• Perform M3C2 with the parameters of your choice
• What do you observe ?

49

Practical on M3C2



• Following Lague et al., 2013
• Core points = 5-10 cm (could be less with higher resolution TLS)

• Normal scale ~ 10 m:
• To capture large scale normal fluctuations and capture average change on rockfall deposits

• Could be lower to capture change on individual blocs/overhangs

• Projection scale ~ 0.5 m -> could be less with higher resolution TLS

• Try an M3C2 with a normal scale of 2 m

50

Practical on M3C2
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With normals « on », appears black With normals « off », appears as locally inverted change



Extremely complex to deal with !

Solutions:

• With M3C2 : provide a series of position towards
which orienting the data

• Fails for very complex surfaces

• Try to reorient normals within Cloudcompare or 
Meshlab

• Very time consuming, not guaranteed

• Cut your core points in several bits, rotate them
towards the +Z, compute the normals, and rotate
back. Merge them back

• Gives a core point file with correctly oriented normals

52

Practical on M3C2

Scanner 
position

Practical on Rangitikei



1. Type of distance measurements
1. Feature based change detection
2. Featureless distance measurement

1. Difference of DEM
2. Cloud to cloud
3. M3C2 distance

a) Algorithm and choice of parameters

b) Benefits of 3D differencing vs vertical differencing

c) Worflow for an equivalent Difference of DEM with M3C2

d) Working with complex TLS data

2. Dealing with uncertainties
1. Components of uncertainty in 3D point cloud change detection

1. Positional uncertainty
2. Registration uncertainty
3. Roughness uncertainty

2. Background on uncertainties
3. Examples
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54

1. Position uncertainty of points within a given point cloud
• Dependent on the survey technique
• Can generally be assumed an uncorrelated random error = can be reduced by averaging
• Complex dependency with range and incidence angle that are difficult to account for

2. Registration uncertainty within and between surveys
• Dependent on the survey technique TLS, ALS, SFM
• Is a systematic error that cannot be reduced by averaging
• Is generally assumed uniform and isotropic, but IS NEVER UNIFORM

• Slight misalignment of flight lines or TLS surveys
• Extremely complex to have a spatially explicit registration error in TLS or ALS
• Not always easy to evaluate

3. Surface roughness related errors
• Independent of the survey technique
• Even if rough surface does not change, a change will be measured between two point clouds taken at different

times owing to the difference of sampling (cf SDDS test)
• Spatially variable

+ Errors related to ground classification !Lague et al., 2013



Uncorrelated random error
• Standard error of the mean of n observations from a population of 

standard deviation σ

𝑆𝐸 =
𝜎

𝑛

• Hyp : the SE on the mean position of the surface characterized by n points
from a fixed LiDAR with a ranging error σ (precision or repeatability)

• TLS : σ ~ 1 mm. 1OO pts gives SE ~ 0.1 mm
• ALS : σ ~ 10 mm. 50 pts gives SE ~ 3.1 mm

Systematic error
• An uncertainty that cannot be reduced by averaging samples

• E.g.: accuracy of a LiDAR system (= bias)
• A registration error between two dataset

55



• Two values 𝑋 ± 𝑆𝐸𝑥, 𝑌 ± 𝑆𝐸𝑦, the uncertainty of the linear
combination of X and Y is :

𝑆𝐸𝑋+𝑌 = 𝑆𝐸𝑥
2 + 𝑆𝐸𝑦

2 + 2𝑟𝑆𝐸𝑥𝑆𝐸𝑦

with r the correlation coefficient between 𝑆𝐸𝑥 and 𝑆𝐸𝑦

• If X and Y are perfectly random, r=0

𝑆𝐸𝑋+𝑌 = 𝑆𝐸𝑥
2 + 𝑆𝐸𝑦

2

• If X and Y are perfectly correlated

𝑆𝐸𝑋+𝑌 = 𝑆𝐸𝑥+𝑆𝐸𝑦

56See Anderson, ESPL, 2019 for a study in the context of DoD



Hyp: Point cloud roughness can be
considered an uncorrelated random
noise :
• True if the surface is flat: point cloud 

roughness is the ranging noise

• Debatable if the surface is rough: a grabel
bed is not a random surface

Hyp 2: Two successive surveys are 
uncorelated

• True if the surface is flat

• Debatable if the surface is rough and has 
not changed !

57

Average positions of the point 
clouds at scale d

Calculation
point

Normal orientation

Local roughness σ2

n2 points

Local roughness σ1
n1 points

Combined standard error of the two surveys at projection scale d

𝑆𝐸𝑃𝐶 =
𝜎1
2

𝑛1
+
𝜎2
2

𝑛2

SEpc =  Combined Standard Error associated to the point cloud position uncertainties and roughness



Hyp 1: The registration error reg between the two
point clouds is spatially uniform and isotropic

Hyp 2: reg and SEpc are supposed fully correlated : 
sum of the standard error (conservative assumption)
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reg = registration error model between the two point clouds

𝑆𝐸𝑡𝑜𝑡 =
𝜎1
2

𝑛1
+
𝜎2
2

𝑛2
+ 𝑟𝑒𝑔

From the standard error we build a 
confidence interval at 95%:

𝐿𝑜𝐷95% = 1.96
𝜎1
2

𝑛1
+
𝜎2
2

𝑛2
+ 𝑟𝑒𝑔

Point cloud roughness at scale d

Point cloud density
at scale d

Registration error

More advanced model when n1 and n2 < 20 in Bernard et al., 2021
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Statistically significant change 
when Dist_M3C2 > LoD95%



• Super tricky !!

• TLS, Lague et al., 2013 :
• With fixed target : mean error on fixed target position between surveys (~ 3 mm)

• With GNSS target : combined error accounting for GNSS accuracy (i.e., 1 cm per 
survey, then reg = 2 cm

• ALS, Bernard et al., 2021 :
• Standard deviation of M3C2 distances on stable areas (after ICP on stable areas)

• ALS, Wagner et al., 2017 :
• Standard error from 3 buildings (after removing vertical bias)

• … 
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Creates at local uncertainty model 
based on multiple SFM 
reconstruction.

M3C2-PM version in CloudCompare
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Evaluation of the uncertainty budget in TLS

• Explore the values of standard deviation, point density and distance 
uncertainty, assuming reg=0 mm

• When is
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Practical
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• reduction of uncertainty by spatial 
averaging is limited

(Lague et al., 2013, ISPRS journal)

Roughness = detrented point cloud deviation



1. Registration error between 2 surveys : ~ 4 - 6 mm

2. Scanner noise : 1.41/√n -> 0 mm by spatial averaging

3. Surface roughness effects (d=0.5 m):
• Flat rock : 0.5 – 5 mm

• Gravel bed : 1- 30 mm

• Rockfall debris : 5-260 mm

Best case : ±4 mm

Debris: ~ 4 cm

Set by registration error

Set by surface roughness

3D map of confidence interval



Detecting flight line overlap errors in ALS

• Extract lines using the point_ID

• 3D M3C2 on the 2 extracted lines :
• What do you observe ?

• Select a registration error of your choice and recompute 3D-M3C2 
between 2014 and 2016

• Check the significant change field of M3C2.
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Practical


