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Workshop objectives

1. Measuring distance betwen two point clouds
* Approaches to register point clouds & quality control (day 2)
— need for metrics to evaluate the distance between two point clouds (M3C2)

* Type of distance measurements

* Feature matching (some examples but no practical)
* Featureless distances: Cloud 2 Cloud, Difference of DEM, M3C2

e Source of uncertainties
* Instrument, registration, method used....
e How to include them in distance measurements ?

* Using a 3D distance field for scientific application
* Example of automated clustering & volume calculation for landslides (day 2)

2. Improving your technicity in processing point clouds
e With Cloudcompare (Rennes team)
e With Python (Potsdam team)

3. Try to solve some of the problems you face with your data



Datasets used in the practical : Airborne LiDAR

Kaikoura Earthquake Dataset used in

Bernard, Lague and Steer, Esurf 2021 : Beyond 2D landslide inventories and their rollover: synoptic
3D inventories and volume from repeat lidar data

7 m Pre-carthquake lidar Post-earthquake lidar

\ (PR x Date of acquisition 13 Mar 2014-20 Mar 2014 3 Dec 2016-6 Jan 2017

A Commissioned by/provided by USC-UCLA-GNS science/NCALM  Land Information New Zealand/AAM NZ
Availability https://doi.org/10.5069/GOG44N75 Upon request from https://canterburymaps.govt.nz/about/feedback/
Original point density (points m~2) 9.02 192+11.7
Number of ground points 10660089 63729096
Ground point density (points m_z) 38+2.1 11.5+6.8
Vertical accuracy (m, as +1 SD) 0.068-0.165 0.04

aete Study area (m?) 5253133 5253133

Legend

7//? Kaikoura earthquake
11-14-2016
Mw 7.8

Study area

42°37'S

—— Active faults during
the earthquake
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I Fredicted saurce and deposi false dotections

Note: the 2014 and 2016 surveys have been cut to not have the same spatial extent. This is to
better highlight the sensitivity of various methods of change detection or registration. .



Datasets used in the practical : Terrestrial LIDAR

Terrestrial LIDAR data from the Rangitikey river in NZ, used in
Lague, Brodu and Leroux, ISPRS 2013 : M3C2 paper

Lague, Dev in Earth Surf Processes, 2021 book chapter on Terrestrial Laser scanner applied to fluvial geomorphology

Surveys in 2009 and 2011
Variety of processes:
Rockfalls

Bed aggradation/erosion
Bank erosion

Leica Scanstation 2 (slow but accurate !)
~1 -2 cm point spacing

— Sy e TLS positi o A T E L PR GO By ~ 3
Google earth-view o Fierot:,réoe’Z B Ty e 5 o % b . RegIStratlon error ~ 3-5mm (1 Std)

Classification with Canupo, but voluntarily not perfect
Version subsampled at 2 cm for
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1. Type of distance measurements
1. Feature based change detection

2. Featureless distance measurement
1. Cloud to cloud
2. Difference of DEM
3.  M3C2 distance

2. Sources of uncertainty

1. Components of uncertainty in 3D point cloud change detection
1. Positional uncertainty

2. Registration uncertainty

3. Roughness uncertainty

Background on uncertainties

3. Examples

N



2 types of topographic change measurement
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Feature matching
— 2D-3D displacement field — distance & volume
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Feature matching: deformation field using Particle Image Velocimetry (PIV) on DEM
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Particle Image Velocimetry

¥(m)

Figure 6. PIV estimated total displacement field and vectors (black) with error ellipses (95% significance)
of CCL between June 2005 and January 2007, GPS honzontal-displacement vectors (red) and displacement
vectors of features identifiable in the point cloud data (white) are plotted using the same scale as the PIV
vectors, Landslide surface features (scarps, thrusts, and boundaries) are adapted from Reid er af, [2003].



Feature matching: deformatin field using Particle Image Velocimetry (PIV) on DEM

Negligible vertical
change / significant
horizontal change

Loss of correlation
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2D Displacement field from DEM correlation

using COSI-CORR (Leprince et al., 2007). Vertical difference of DEM

Lucieer et al., Progress in Phys. Geography, 2014



Feature matching on 3D point cloud change detection by piecewise ICP

Piecewise ICP (Iterative Closest Point):
* PCis divided in smaller clouds
* aregistration is performed between the two epochs
* Gives a local 3D displacement vector

a initial state Iterative Closest Point (ICP) algorithm final state source b
20U e point ¢ tronsfor- sum of transformations
< o = total di ®p noemal
A s W e | |
Gl Tt i, e, oo, | oo
po-mdood lwmm 3%;2““”“ atrmslo-mogdn 1. mdoseslpm 1umdumagm ;gzum
From Ed Nissen’s course on OpenTopography
(From Krishnan et al., 2016)
Teza et al., 2007,2008 TLS : landslide displacement
s Benefits:
2 *  Works directly on 3D point clouds
’ . * 3D displacement field

* Potentially very accurate

Current Limits:

* Requires a surface with topographic complexity or features (e.g., buildings)
. * Features must be preserved after the event

e * Range of displacement cannot be too large 9




Generic approaches to detect topographic change on point clouds

Tectonic

Fault -, /\
\\ I‘___
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Slow landslide displacement

Type of geometric change

Ground movements displacing

Geomorphic processes changing

topographic features topographic features
‘. Suitable measurement l,
Feature matching No features to match

—» 2D-3D displacement field

- Distance and volume

Existing automatic work-flows

3D Point cloud t1 +t2
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I Vegetation removal ‘
}

25D DTM
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Deep feature 3D
matching

(Z. Gojcic et al., 2020)

e.g., F2S3

3D Piecewise 2D Correlation
ICP technigues (PIV)

{

Landslide displacement field
Earthguake deformation
Ice flow velocities
Dune migration

From Passalacqua et al., 2015

3D Point cloud t1 +1t2

l
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/
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3D Cloud to 3D Zloud to Vertical grid
cloud distance megh distance subtraction
Accurate change Syéolume calcuﬁffn
detection ; ,‘
Geomorphic change on complex Sediment budget

scenes and steep topography:
rockfall statistics, bank erosion,
mountain rivers.
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on flat topography
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1. Type of distance measurements
1. Feature based change detection
2. Featureless distance measurement
1. Difference of DEM

2. Cloudto cloud
3.  M3C2 distance

2. Sources of uncertainty

1. Components of uncertainty in 3D point cloud change detection
1. Positional uncertainty

2. Registration uncertainty

3. Roughness uncertainty

Background on uncertainties

3. Examples

N
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Classical approach: vertical Difference of DEM (DoD)

{. ]

) °|' 1 ¢ j For each pixel,
dz=z(t+dt)-z(t)

-
Time t .i,.: l

7.

Time t+dt ot — i ..:

[ ]
> |V * . Raster of elevation difference
[ ]

o . P

* The classical approach in Geomorphology and Earth Sciences
e Very easy to perform on any GIS
e (Can also be done in Cloudcompare, but not necessarily optimal

* Very advanced packages existing for fluvial analysis (Geomorphological Change
Detection Toolbox, Wheaton et al. 2010) >



Practical

CIOUQCOIMpare appiliCalior

 Kaikoura EQ Lidar dataset (2014 and 2016, ground data only)
* Load the 2 datasets

* Tools -> volume -> compute 2.5D volume with a step of 1 m
* Note the added and removed volume
* Note the % of matching cells

* Export grid of height difference raster
 NOTE: the height difference is automatically calculated on the same grid




Practical
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e SDDS tests : Same Data Differing Sampling testsS (agueetal, 2013; Bernard et al,, 2021; )
* Same underlying surface but different sampling
* Take into account the noise in the data and the surface roughness without the registration error
— no change should theoretically be measured by the change detection technique

Original Data (gravel river bed) Subsampling with _
min distance '
1400 pts
Random Subsampling |8
with 1400 pts
Applications:

e Testing robustness of change detection method
* Testing robustness of cloud matching approaches (ICP,...)
* Indirect validation of statistical models for significant change detection




Practical

e e e el S VYV I LI e N

Kaikoura 2016 EQ Lidar dataset
e Subsample with 0.5 m min distance ->2016_sub0.5
* Subsample randomly to have ~ 9.5 million points -> 2016_rand
* Tools -> volume -> compute 2.5D volume with a step of 1 m
 What do you observe ?

 Compute the std deviation of the height difference (tools -> statistics ->
compute stat params -> gauss)



Difference of DEMs : Pros an Cons

* Pros

Regular sampling of topographic change

Compact format

Easy vertical differencing (Difference of DEM=DoD)

Simple volume calculation = sum of the vertical difference x pixel area

Well integrated in traditional workflow using DEM Landsliding

v 4 Bank

erosion

* Cons
* Loss of resolution as topographic slope increases
* Cannot represent vertical surfaces
No oriented difference
 E.g., bank erosion and bed aggradation correctly
Interpolation on complex surfaces

* “Creation” of data whose accuracy is unknown
* You generally lose the information on where interpolation occured

Diff of DEM
Loss of sub-pixel information
* Did you have 100 pts in your pixel or 1 ? . l l
* Was the sub-pixel geometry flat or rough ? I
Cannot represent 3D above ground features
* Did you have 100 pts in your pixel or 1 ?

© Mernedutnce 30, dvectyonpomtciots
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1. Type of distance measurements
1. Feature based change detection
2. Featureless distance measurement
1. Difference of DEM

2. Cloudto cloud
3.  M3C2 distance

2. Sources of uncertainty

1. Components of uncertainty in 3D point cloud change detection
1. Positional uncertainty

2. Registration uncertainty

3. Roughness uncertainty

Background on uncertainties

3. Examples

N
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S0 Cloud 1o Cclouad distances
SiIMpIiest approacn : nearest point distance (Cloud £ cloud aka CZ0)

A: Closest point distance L¢,¢

Compared surface s, :\o ° ‘\ 4 gt 1,:0{-,,; cloud 2 For each.point in-the compared PC, look for the
True distance L, | s “:59 o " Ii“ .T noise o; nearest neighbour in the reference PC and compute
Reference Surface S, *Oﬁ ®OOOO_ ° do e bé IPOf'nt cloud 1 the 3D distance
o o o %" 0%e  Ynoise o,
-~~~ Closest point on PC, Ne

Pro:

* A 3D measurement directly on point clouds : can be used on horizontal or vertical surfaces
* Super fast and simple (no need to rasterize)
* Highest resolution possible
Con:
* Underestimation of true distance due to noise
* No normal calculation

— Non-oriented measurement : not necessarily the orthogonal distance between two surfaces. E.g.

on a river bed, not generally the vertical distance — overestimation of true distance

— Non-signed measurement : no difference between erosion and sedimentation Ref
* Highly sensitive to missing data T

o o: . .o ¢ \No data
Y.

Compared *,



Practical

CZL distances In Ciouacompare

e Using the Kaikoura EQ dataset

* Select C2C distance between 2016 and 2014, with 2014 as
a reference (1st epoch)

* Press COMPUTE

* A new scalar field is created in the 2016 dataset

Some infos on very approximate measures. NOT TO BE USED

Very large value due to
difference in LiDAR extents
— can lead to very long
computation time

— can be lowered if
necessary

This value depends on
your CPY. On a very large
dataset, leave at least 1
thread not used (7/8)

Compared |Lidar_lD 16 |

Reference |LDAR_2014 |

General parameters Local modeling Approximate distances

Octr | AUTO ~
[] max. distance 183.254471 =
signed distances flip normals

[ split %, and Z components

use reference sensor to filter hidden points

max thread count

multi-threaded

19
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B: Closest point with

A: Closest point distance L, local height function Lg,c

* Using a local model | Sutce sy L’,” S
 Reduces the underestimation due to noise  surfaces, ¥°, H“’ P e e
* Does not resolve the non-oriented issue e e ot e
* Does not yield a signed distance From Lague et ., 2013

* Using the vertical component of the distance vector
 Signed vertical distance = erosion and sedimentation
* Does not resolve the non-oriented issue
* Is not accurate enough

E{} Useful for quick & dirty exploration of data to evaluate where large vertical change occur



Reference point cloud:
* |deally the initial dataset

* But sometimes choosing a dataset with much larger point
densities and less missing data yield better results

With cloudcompare:

* Check the maximum distance before launching the
calculation

* Can be imposed if using command line



Practical

vertical LZL alstances In Clouacompare

e Using the Kaikoura EQ dataset e | orven [ |

+ Select C2C distance between 2016 and 2014, With 2016 a5 e wsms oo s == |
a reference (as it is the denser point cloud) Freme AR . s S s

* Tick the «split X,Y,Z components » it

* Set max_distance =30 m

e Select a local modeling : least square plane, 5 m radius

* Press COMPUTE

* 4 new scalar field are created on the 2014 dataset

* Display the C2C absolute distance [<30] (Z) scalar field o —_—

Tip: because we have inverted the reference, erosion
appears as positive. To change that multigly by -1 in
scalar arithmetics




Practical

200D LeST WILN LZLU

* Perform a C2C without local modelling with the spatial e
subsampling as reference (with Z component)

* Display the histogram of absolute distances
 Compute the mean of non-zero absolute distances

* Display the histogram of the vertical distance L R TR RS R
* Compute the std deviation of non zero absolute_distances_Z
* Tricky question : why does the distribution appear discretized ? S —— .

4

0
€2€ absolute distances (Z)
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1. Type of distance measurements
1. Feature based change detection
2. Featureless distance measurement
1. Difference of DEM
2. Cloud to cloud
3. M3C2 distance

a) Algorithm and choice of parameters
b) Benefits of 3D differencing vs vertical differencing
c) Worflow for an equivalent Difference of DEM with M3C2

d) Working with complex TLS data

2. Dealing with uncertainties
1. Components of uncertainty in 3D point cloud change detection

1. Positional uncertainty
2. Registration uncertainty
3. Roughness uncertainty

2. Background on uncertainties
3. Examples

24
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Comparison (M3C2), Lague et al. 2012

February 2011

3D surface normal
orientation

Variable roughness in
space and time

Rangitikei river, New-Zealand

Elements of M3C2
1.
2.

A way to compute distances

A model of uncertainty to compute
a confidence interval for each
distance accounting

25



M3C2: 3D pomt cloud dlfferencmg (Lague et al,, 2013)

+- 5 m amplitude
surface cha_nge
2009/2011 .gg M .

DIff (m)]
298
5.0
4.5¢
400
|
38
bt |
|
osg
»7‘.
osp
|
bt
2ol
|
|
4.0

4

1: Normal direction calculation on cloud 1 at scale D

coun1 ki, — Oriented difference
Normal " 2: Cylinder of diameter d (projection scale)
Scale=D * Average position of each PC within the cylinder
 M3C2 Distance = distance between the two average
position along the normal direction
Projection 3: Local confidence interval calculation using
sca{e d — Local cloud roughness
= averaging scale

— Local point density
— Global registration

4: Distance smaller than confidence interval
— statistically not significant

5: Length of the cylinder = L

— no calculation
Search depth L

o max . 26
Tip : scales in M3C2 are diameters | — no need to trim the data

If no intercept with other cloud

max*




VISLZ OpPTIoNS

| . e®oeo
Option 1: Vertical mode .O. ° ° .O
- no normal calculation - Faster .. o ® o .. ®
Nickname : vertical-M3C2 o_® o € ¢
¢ « ® € € ¢ ¢
€ ¢ ¢ ¢ € ¢ ¢

Option 2: Horizontal normals
— Bank or cliff retreat Point Cloud t [m{mmmts
— No need to rotate the data

Horizontal mode
Automatically tracks bank orientation

Option 3: CORE PO!NTS . . o Core point cloud
* Subset of points of arbitrary geometry on which the calculation is done

— Grid of core points solve the sampling irregularity issue of 3D data
— Spatial resampling of the data with minimum distance in 3D |
* But uses the RAW DATA for underlying calculation o®o

° P oy, ® . . CLOUD 1 \ 4 .
Mean point position, point density, local roughness «® .. ° C .. .- ¢
-> Faster ® o .. ...
-> Generate calculation <
ol @ oloe %%¢
¢

-> Can be used for volume calculation ¢« ¢ ¢ ¢ ¢

27



Practical M3C2

ALY Udld
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* Create a raster from the 2014 dataset with 1 m step — core 2014 1m

e Select the 2014 and 2016 data and launch M3C2
* Fill the parameters as follow :

£4 M3C2 distance 7 x Tip : if the core_point already has
[~ Cloud #1 |LiDAR_2014[ID 275] | % nOrma|S, y0U can dlrectly use
Coud #2. [Lider_2016 [0 277 | them for faster processing
Main parame: ters Normals Advances d Precision maps Output
Scales
Mormals |diameter = 10.000000 e | Compute normals {on core points) w Calcu |ati0n On a " the
Projection |diameter = 5.000000 % [max depth = 20000000 :] pOintS of cloud # 1 CLOUD 1 .'
Core paints Y
O use doud #1 On the fly minimum Normal
() subsample doud #1  4,742521 < + . .
(®) use other doud Core_2014_1im [ID 377] - dlstance SUb-Sampllng Scale — D 7 "
|:| Registration error |0.050000 Guess params ... . ;‘
A specific core point ¢

cloud that you have .
created Projection

scale =d

— Do not use for the moment

14
P S
H
(4]

0.

Max depth'i,




Practical M3C2 3D multi-scale

(will be explained later)

NOrmals /

5% M3C2 distance

Cloud #1 |LiDAR_2014 [ID 275] /
7
3D normal at a B Cloud #2  |Lidar_2016 [1D 277] / |
Co N Sta nt Sca Ie Main parameters Mormals Advanged Precision maps Output
Calculation mode
(de a u t Ode) (®) Default () Multi-scale () Vertical () Horizontal
Min = 4242821 > | |Step = 4.242821 + | |Max = 15.971285 =
+Z FaSter CaICUIation as / IJse core points for normal calculation
there are less points o
Orientation
than CIOUd #1 (@) Preferred orientation | 47 ~

(O Use origin paint(s) Lidar_2016 [ID 277]

€ ¢ ¢ ¢
¢ ¢ .. Py :.‘ e®e0 ® o Because we are using
¢ e ® ALS we can directly
L ¢ e, use +Z (i.e., the sky)
© ¢
,Z\.: =
\\..
.’:.. /’
o @
J ". ./‘ With ground-based 3D data (e.g., TLS) with overhanging parts using
. 9, +Z will be incorrect (flipping of sign of the M3C2_distance). We’ll see
% how to deal with these limits using an « origin points file »

29
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Practical M3C2

O t t a ‘Principle of the Multiscale Model to Model Cloud Comparison M3CZ‘
u p u Step 1 : Calculation of normal ﬁ Step 2 : Average distance between the two
at a scale D around the core point i. clouds measured at a scale d along N Core point
a2
PN
Typical configuration o, (o o s Y o o o o Core point projection
S1 S I M) a,(D) o eay oncloud#1
% M3C2 distance ? x O o\o ©9p]p°0 o0 b OO
e, .
o u ca(i)
Cloud #1 |LiDAR_2014 [ID 275] | % s, _° OO ® 9 00 0o o e 9ch
Cloud #2 |Lidar_2016 [ID 277] | ) e o © OO 0%e ° e P&\g\ Core point projection
L oncloud #2
Main parameters ~ Mormals  Advanced  Precsionmaps | Output Average positions

of the point clouds
Project core points on | Keep original positions ~ | [_] use original doud

Export standard deviation informiation Create the M3C2 Scalar FleIdS

Export point density at projection scale .. . . Lague et al-, 2013
on the original core point file

Create a copy of the core point file (without all the scalars of the core point file) with the M3C2 Scalar Fields

Other options (advanced use):
Project core points on « cloud #1 »

* Create a new point cloud corresponding to the average position of cloud #1 around each core point
e Records the M3C2 scalar fields on it

Tip : this will generate a smoothed version of cloud #1. | recommend to use it only if you really know what you’re doing !

Project core points on « cloud #2 »

 Create a new point cloud corresponding to the average position of cloud #2 around each core point
 Records the M3C2 scalar fields on it

Tip : this will generate a smoothed version of cloud #2. | recommend to use it only if you really know what you’re doing !



neSUiL

* The output of M3C2 now has normals

e 7 new scalar fields :
* M3C2 distance: signed 3D distance (grey = no intercept with cloud # 2)
* Distance uncertainty at 95% confidence: spatially variable (will be explained later)
 Significant change (boolean): 1= M3C2_distance=distance_uncertainty; 0= M3C2_distance<distance_uncertainty
* Npoints_cloudl1 (resp 2) = nb pts intercepted by the projection cylinder in cloud #1 (resp cloud #2)
e Std_cloudl (resp 2) = detrended roughness at the projection scale of cloud #1 (resp cloud #2)

ierault pomnt Size - - 4

efault line width — &

31
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 Split the M3C2 distance field in values, and NaN (min-max without
changing anything)

* Inspect the NaN values

Why an M3C2 distance is
not computed
everywhere ?

32



Missing M3C2 distances: solutions

* On the non-overlapping data, there are no correspondence in cloud
#2 — expected behaviour, no need to trim the data !

* Inside the overlapping area 3 possible causes: Typical case of max depth not large enough

* The maximum depth is not large enough
* Increase the maximum depth \
e Data is locally missing in one of the cloud

e e.g., below a tree, or due to water (full NIR absorption)
* Normal behaviour

 M3C2_distance is frequently not calculated
* The projection scale is too small

On this dataset 40 m would be‘needed
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 M3C2 « averages » the point cloud to :

* Obtain a more accurate estimate of the mean position of the implicit surface (e.g.,
averaging random noise)

* Evaluate local parameters of the uncertainty model: nb points, standard deviation

* The optimal projection scale is thus a balance between :

 d large enough to have enough points on both clouds to compute a robust uncertainty
model (typically ~ 20 pts) — function of point clouds densities

* d small enough to resolve sharp spatial variations in M3C2 distances (i.e., avoiding a too
large smoothing effect)

Choose d such that you have at least ~ 20 pts on the point
cloud with the smallest point density

e.g., discussion in Lague et al. 2013 and Bernard et al., 2021



Practical M3C2 : choosing the projection scale

2014 Lidar Nbpoints

2016 Lidar Nbpoints

1000
@ Histogram [M3C2 output scale=10.extract] o x (@ Histogram [M3C2 output scale=10.extract] O X
Npoints_cloud1 (2340624 values) [256 classes] = Npoints_cloud2 (2940624 values) [256 classes] e
in1:%'9185; % : N Lk -
\188 % 0.797 %
s LIDAR 2014 sets the w00 |55
constraint on the

] projection scale. 5miis a
00 good choice, as roughly 80

% of core points have at
least 20 points, but some
] area won’t have enough
] points to have a robust

M3C2_distance and
uncertainty

T T T T T T . T
50 100 150
Mpeints_doud1

100

200 300

400 500
Npoints_doud?



CHOOSINE Lhe MmMax depir

* Large enough to intercept the two point clouds = f(max topographic change)

* Vertical-M3C2: can be very large, but the larger the longer the calculation

e Standard 3D M3C2: be careful of double intercepts : cylinder crossing the
same cloud twice : incorrect distance measurement

— Normal direction

e =sl

X

Use the smallest max depth possible to avoid
double intercepts

Inspect your data !

Use a SDDS test to evaluate the problem

New version of M3C2 using a progressive
cylinder search currently in beta testing !

Tip: the multiscale normal tend to favor this
issue, while a constant large normal reduces it
(at the expense of accurate distance
measurement)

36



Practical on M3C2

1IHI4Aa201 GALT) IB MAUANIN TN bk—VLJ

e Kaikoura 2016 EQ Lidar dataset

* Create a raster of core points with 2 m spacing -> core_2 m

e Use subsample versions « 2016 _sub0.5 » and « 2016 _rand »

* 3D-M3C2 with core_2m normal scale =10 m, proj scale =5 m, depth =40 m
* Rename the M3C2_distance in M3C2_distance _40m

* 3D-M3C2 with the previous M3C2_result as core points, with normal scale =
10 m, proj scale =5 m and depth = 2 m (on output, tick the box use original
cloud)

* Using scalar arithmetics compare M3C2_distance_40m and M3C2_distance
at 2m depth

* Highlight where there are differences



CNOOSINE tThe normal scaie U In iViaL4Z

Small scale compared to rougness characteristics

TRUE

displacement T ) \

Large scale compared to rougness characteristics

o . .
displocement | —

BRI | o ey
-

Computing normal on rough surfaces is an extremely complex problem |
D should be small enough to track the changes of the topography

D should be large enough to not « flicker » due to noise

The smaller is D, the faster is the computation of normals

Attempt in Lague et al., 2013 to define an objective function by comparing the
distance estimation error E_ ., and normal scale/roughness

1000

100

10

(70)

norm

14

E

0.1 -

0.01

o 1-3 cm min point spacing Subsampled at :
e —0O— Rockfall debris —0—20c¢m
1 o0 —4— Alluvial bank —A— 10 cm
o —0— Cobble bed —@— 10 cm
—® —@— Gravel bed —&— 10 cm
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—
.-,_,\.x.
. \.\
050 *
=
[ ]
B o2 \ _
— 5 p -i5
Enr_lrrn—‘1 310 <> -2 |E|
— - ; . —_—
10 100

<E>= Normal Scale D/Mean Roughness (<a(D)>)

Lague et al., 2013

Choose the smallest Dn such that

Normal Scale Dy > ~ 25 roughness(D,) 38
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Bernard et al., esurf, 2021

No simple a priori prediction as roughness is scale dependent
* Roughness needs to be calculated at all scales (no automated
way (yet) in M3C2)
Bernard et al., esurf, 2021 : Using the pre-EQ with the lowest point
density, a normal scale of 10 m allows for ~80% of the points to
validate ¢ > 25

For a given type of data (ALS, TLS,...), the normal scale is
generally not depending a lot on point density but on the
roughness properties of the landscape :

ALS : 10-20 m seems a good range but further exploration of this
parameter is needed



What about the multiscale approach ?nefirst minm3sc2)

* Developped as an attempt to automatically find the optimal scale
 Compute the normal at various scales and choose the scale at which the surface appears flatter

Normal Orientation ___ Most Planar Scale Normal orientation
on 2009 data used for Normal \ A Accuracy
Computation

e

Fig. 7. Normal calculation with automatic selection of the most planar scale on the rockfall area (Fig. 1). Normal orientation is defined in a Hue Saturation Value colour wheel.
¢ is an indicator of normal orientation accuracy given by Eq. (4): when ¢ > 20 error on distance calculation between two clouds due to the normal orientation inaccuracy is
lower than ~2%. Points in grey correspond to ¢ < 20.

Pros:
It better captures variations in normal orientation near edges, but appears more important for TLS than ALS
Cons:
It is super long, especially as we increase the largest scale -> in practive | barely use it, or with a limited range of scale
It can create very large local variations which may not be desirable for data interpretation
It remains to be systematically tested in more environments than Lague et al., 2013, especially for ALS 40
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Multiscale approach from 4 to 50 m with 2 m step. M3C2 creates a new scalar field called « normal scale »
Result smoothed at 2.5 m radius

normal scale.smooth(2.5)

50.000

47.151

44,301

10.109

1000

High curvature areas (channel banks, ridges...) yield small normal scales ->4-10 m
Flat areas yield very large ones, typically 20-50 m : for these surfaces, using a 10 m scale does not change the
normal vector, but significantly speed up calculation 4l
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1. Type of distance measurements
1. Feature based change detection
2. Featureless distance measurement
1. Difference of DEM
2. Cloud to cloud
3. M3C2 distance

a) Algorithm and choice of parameters
b) Benefits of 3D differencing vs vertical differencing
c) Worflow for an equivalent Difference of DEM with M3C2

d) Working with complex TLS data

2. Dealing with uncertainties
1. Components of uncertainty in 3D point cloud change detection

1. Positional uncertainty
2. Registration uncertainty
3. Roughness uncertainty
2. Background on uncertainties
3. Examples
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Practical on M3C2

The impact of 3D differencing vs vertical differencing

* SDDS test : Same Data Differing Sampling test (-c.ccta, 20
 Kaikoura 2016 EQ Lidar dataset

* Create a raster of core points with 2 m spacing -> core_2 m

e Subsample with 0.5 m min distance -> 2016 _sub0.5

e Subsample randomly to have ~ 9.5 million points -> 2016 _rand
* Vertical-M3C2 with projection scale =5 m, depth = 3m

 Compute std of M3C2_distances
e Optionnal: you can perform a 2.5 volume calculation on 2016 _sub0.5 and 2016_rand

e 3D-M3C2 with normal scale =10 m, proj scale =5m, depth=3m
* Compute std of M3C2_distances

 Compare the two maps with similar saturation



Practical on M3C2

Benefit of 3D differencing vs vertical differencing

b 106
) 3> Vertical diff i
ertica Ifrerencing
B ean = -2.10% SD =0.2
, Distances (m) 3 m— e "% = 0.05
0.30
0.15
e
5
0 0o
o
-0.15
-0.30

-0.2 0.0 0.2 0.4
M3C2 distance (m)

From Bernard et al., 2021
Increased ability to detect change on steep slopes
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1. Type of distance measurements
1. Feature based change detection

2. Featureless distance measurement

1. Difference of DEM

2. Cloud to cloud

3. M3C2 distance

a) Algorithm and choice of parameters

) Benefits of 3D differencing vs vertical differencing
) Worflow for an equivalent Difference of DEM with M3C2
) Working with complex TLS data

o O T

2. Dealing with uncertainties
1. Components of uncertainty in 3D point cloud change detection

1. Positional uncertainty
2. Registration uncertainty
3. Roughness uncertainty

2. Background on uncertainties
3. Examples
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(e.g. Wagner et al., GRL, 2017)

Create a regular grid of point clouds with step dx

Vertical-M3C2 with a projection scale > /2dx to ensure entire sampling
of the surface

— Grid of vertical distances where it can be calculated : no computation where there
is no corresponding data (i.e. wetted channels)

— Grid of spatially variable confidence intervals
Interpolate the grid of vertical distances if needed

Compute volume and volume uncertainty

Illustration on the Kaikoura ALS Data



Example of DoD workflow with M3C2

Uncertainty map combining roughness
and registration effects

Apex UTM15R
652230m N
3269100m E

(Wagner, Lague, Morhig, Passalacqua, Shaw, Moffett, GRL, 2017)
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1. Type of distance measurements
1. Feature based change detection
2. Featureless distance measurement
1. Difference of DEM
2. Cloud to cloud
3. M3C2 distance

a) Algorithm and choice of parameters

b) Benefits of 3D differencing vs vertical differencing

c) Worflow for an equivalent Difference of DEM with M3C2
d) Working with complex TLS data

2. Dealing with uncertainties
1. Components of uncertainty in 3D point cloud change detection

1. Positional uncertainty
2. Registration uncertainty
3. Roughness uncertainty
2. Background on uncertainties
3. Examples
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Practical on M3C2
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* Load the TLS_Mangarere_Rangitikei.bin file

e C2C with 2011 data as the reference
 What do you observe ?

e Core points creation for M3C2 calculation
* Which dataset would be best to create the core points ?
* Create core points from spatial subsampling at 5 cm

e Perform M3C2 with the parameters of your choice
 What do you observe ?



Practical on M3C2
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* Following Lague et al., 2013
* Core points = 5-10 cm (could be less with higher resolution TLS)

* Normal scale ~ 10 m:
* To capture large scale normal fluctuations and capture average change on rockfall deposits
* Could be lower to capture change on individual blocs/overhangs

* Projection scale ~ 0.5 m -> could be less with higher resolution TLS

* Try an M3C2 with a normal scale of 2 m



Example of normal orientation issue when using +Z option on
overhanging parts

A

» L4
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v '/‘ ‘.-};4”-
w

rd

9 z Y' ' ‘-’T'ﬂ i # £ ul <
&~ # % 3 LT
> f' 7( W

4, .' L2 o # o L &3‘

e ...

With normals « on », appears black With normals « off », appears as locally inverted change
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Practical on M3C2
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L3

Extremely complex to deal with |

s 9

Solutions:

* With M3C2 : provide a series of position towards
which orienting the data

* Fails for very complex surfaces %

* Try to reorient normals within Cloudcompare or f
Meshlab

* Very time consuming, not guaranteed

* Cut your core points in several bits, rotate them
towards the +Z, compute the normals, and rotate —
back. Merge them back
* Gives a core point file with correctly oriented normals

® Scanner
position

L3

Practical on Rangitikei



Fi1aili

1. Type of distance measurements
1. Feature based change detection
2. Featureless distance measurement
1. Difference of DEM
2. Cloud to cloud
3. M3C2 distance

a) Algorithm and choice of parameters
b) Benefits of 3D differencing vs vertical differencing
c) Worflow for an equivalent Difference of DEM with M3C2

d) Working with complex TLS data

2. Dealing with uncertainties

1. Components of uncertainty in 3D point cloud change detection
1. Positional uncertainty
2. Registration uncertainty
3. Roughness uncertainty

2. Background on uncertainties
3. Examples
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1. Position uncertainty of points within a given point cloud
* Dependent on the survey technique
* Can generally be assumed an uncorrelated random error = can be reduced by averaging
« Complex dependency with range and incidence angle that are difficult to account for

2. Registration uncertainty within and between surveys
 Dependent on the survey technique TLS, ALS, SFM
* Is a systematic error that cannot be reduced by averaging
* Is generally assumed uniform and isotropic, but IS NEVER UNIFORM
e Slight misalignment of flight lines or TLS surveys
* Extremely complex to have a spatially explicit registration error in TLS or ALS
* Not always easy to evaluate

3. Surface roughness related errors
* Independent of the survey technigue
 Even if rough surface does not change, a change will be measured between two point clouds taken at different
times owing to the difference of sampling (cf SDDS test)
e Spatially variable

Lague et al., 2013 + Errors related to ground classification !



AN I I NN WA \-y I e 0 000 INANSD L AN EES AN RIS AR SIS

Uncorrelated random error

e Standard error of the mean of n observations from a population of

standard deviation o i

SE = —
Vn

* Hyp : the SE on the mean position of the surface characterized by n points

from a fixed LiDAR with a ranging error o (precision or repeatability)

* TLS: 0~ 1 mm. 100 pts gives SE~ 0.1 mm
* ALS: 0~ 10 mm. 50 pts gives SE ~ 3.1 mm

Systematic error

* An uncertainty that cannot be reduced by averaging samples
e E.g.: accuracy of a LiDAR system (= bias)
* A registration error between two dataset
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* Two values X + SE,, Y £ SE,, the uncertainty of the linear
combination of Xand Y is :

SEy,y = \/SE,% + SE; + 2rSE,SE,

with r the correlation coefficient between SE, and SE,,

* [f Xand Y are perfectly random, r=0

SEX+Y — \/SE_,% + SE:)Z,

e If Xand Y are perfectly correlated
SEX+Y —_ SEx+SEy

See Anderson, ESPL, 2019 for a study in the context of DoD
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SE,. = Combined Standard Error associated to the point cloud position uncertainties and roughness

Average positions of theggic Normal orientation

Hyp: Point cloud roughness can be clouds at scale d
considered an uncorrelated random \
hoise : Local roughness o,

n, points

* True if the surface is flat: point cloud
roughness is the ranging noise

. . Local h 1
* Debatable if the surface is rough: a grabel T A , e L0C2 roug ness o
bed is not a random surface

Calculation
point

Hyp 2: Two successive surveys are

uncorelated . .
Combined standard error of the two surveys at projection scale d

 True if the surface is flat

* Debatable if the surface is rough and has of 0}
not changed ! n, | n,
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reg = registration error model between the two point clouds

Hyp 1: The registration error reg between the two
point clouds is spatially uniform and isotropic

Hyp 2: reg and SE . are supposed fully correlated :

sum of the standard error (conservatlve assumptlon)
Point cloud roughness at scale d

SE 012 + 02 +
= |—+—=+7re
tot n o, g
From the standard error we build a of o7 \ Ragi .
_ 91 %2 egistration error
confidence interval at 95%: LoDosy, = 1.96 n, + n, + reg/

Point cloud density

More advanced model when n1 and n2 < 20 in Bernard et al., 2021 at scale d
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e Super tricky !!
e TLS, Lague et al., 2013 :

» With fixed target : mean error on fixed target position between surveys (~ 3 mm)

* With GNSS target : combined error accounting for GNSS accuracy (i.e., 1 cm per
survey, then reg =+/2 cm

 ALS, Bernard et al., 2021 :

e Standard deviation of M3C2 distances on stable areas (after ICP on stable areas)

e ALS, Wagner et al., 2017 :

e Standard error from 3 buildings (after removing vertical bias)



For SFM

Creates at local uncertainty model
based on multiple SFM
reconstruction.

M3C2-PM version in CloudCompare

3-D uncertainty-based topographic change
detection with structure-from-motion
photogrammetry: precision maps for ground
control and directly georeferenced surveys

—
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SURVEY 1: Image acquisition and
control measurements (with precision estimates)

¥

PhotoScan

o process data into georeferenced sparse point cloud “u.

¥

Maonte Carlo Python script
repeated bundle adjustments:

™
random offsets added to represent
dense

H control and image measurement
] rmatching \ precision for each adjustment

S_georef ‘

s process Monte Carlo output
files to derive point coordinate
precision estimates, variance-

. covariance an d other metrics ',z’

2

[ dense point cloud and associated precision maps ]

e 0 B B

i

]
:
[}
1
i

SURVEY 2
[processed as
abowve)

CloudCompare and 5IM_georef

-

s MIC2-PM
for each analysed point;
calculate 3-0 distance between surveys with M3C2

determine if change exceeds a local LoD, derived
v from 3-D precision maps ¥,

- -

dense point cloud and associated 3-D change
detected at 95% confidence level

data collection and
preliminary processing

survey precision estimation

3-D change with local

cofidence bounds
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Practical

Evaluation of the uncertainty budget in TLS

* Explore the values of standard deviation, point density and distance
uncertainty, assuming reg=0 mm

e When is



Self-affinity of rough natural surfaces
and consequences

¢ : Point cloud samples Cobb

le bed

g AR

< Cora s tRiat I Sk

Flat cliff

Roughness = detrented point cloud deviation

L Rockfall debris

E e
- *
= f +s—o-se—e-9 Cobble bed
2 S5t s
S 0.01- _—* .
g oo et ¢ Flat cliff Consequences for :
g el H‘HIL : Scanner noise imit = 141 mm * reduction of uncertainty by spatial
1 T, averaging is limited
Scale (m)

(Lague et al., 2013, ISPRS journal)



iotal budget ror ievel or change detection

(LOD) at Y9 70 conrtidence (Leica Scanstation 2 or C10)
Lague et al., ISPRS journal, 2013

1. Registration error between 2 surveys:~ 4 -6 mm
2. Scanner noise : 1.41/Vn -> 0 mm by spatial averaging

3. Surface roughness effects (d=0.5 m):
* Flatrock:0.5-5mm
* Gravel bed : 1- 30 mm
* Rockfall debris : 5-260 mm

Best case : ¥4 mm

Set by registration error

3D map of confidence interval

[LOB95% (m)]
R0

Debris: ~ 4 cm

Set by surface roughness




Practical

Detecting flight line overlap errors in ALS

* Extract lines using the point_ID

3D M3C2 on the 2 extracted lines :
 What do you observe ?

* Select a registration error of your choice and recompute 3D-M3C2
between 2014 and 2016

* Check the significant change field of M3C2.



